Room temperature on-wafer ballistic graphene field-effect-transistor with oblique double-gate
نویسندگان
چکیده
منابع مشابه
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
A hetero gate dielectric low band gap material DG Tunnel FET is presented here. The investigated device is almost free from short channel effects like DIBL and t V rolloff. Simulation of the device characteristics shows significant improvement over conventional double gate TFET when compared interms of on current, ambipolar current, roll-off, miller capacitance and, device delay time. Simulatio...
متن کاملDouble-gate nanowire field effect transistor for a biosensor.
A silicon nanowire field effect transistor (FET) straddled by the double-gate was demonstrated for biosensor application. The separated double-gates, G1 (primary) and G2 (secondary), allow independent voltage control to modulate channel potential. Therefore, the detection sensitivity was enhanced by the use of G2. By applying weakly positive bias to G2, the sensing window was significantly broa...
متن کاملFacile preparation of an n-type reduced graphene oxide field effect transistor at room temperature.
We introduce a facile method to prepare an n-type reduced graphene oxide field effect transistor at room temperature via a typical Benkeser reduction using lithium and ethylenediamine.
متن کاملBias-temperature instability on the back gate of single-layer double-gated graphene field-effect transistors
We study the positive and negative bias-temperature instabilities (PBTI and NBTI) on the back gate of single-layer double-gated graphene fieldeffect transistors (GFETs). By analyzing the resulting degradation at different stress times and oxide fields we show that there is a significant asymmetry between PBTI and NBTI with respect to their dependences on these parameters. Finally, we compare th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2016
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.4954639